选(抽)取与分配问题
高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )
A.16种 B.18种
C.37种 D.48种
【解析】 法一:(直接法)
以甲工厂分配班级情况进行分类,共分为三类:
第一类,三个班级都去甲工厂,此时分配方案只有1种情况;
第二类,有两个班级去甲工厂,剩下的一个班级去另外三个工厂,其分配方案共有3×3=9种;
第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有3×3×3=27种.
综上所述,不同的分配方案有1+9+27=37(种).
法二:(间接法)
先计算三个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即4×4×4-3×3×3=37(种)方案.
【答案】 C
解决抽取(分配)问题的方法
(1)当涉及对象数目不大时,一般选用枚举法、树形图法、框图法或者图表法.
(2)当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.
1.某班有3名学生准备参加校运会的100米、200米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生的参赛的不同方法有( )
A.24种 B.48种
C.64种 D.81种