由①②,得B=,③
由a,b,c成等比数列,有b2=ac,④
由余弦定理及③,
可得b2=a2+c2-2accos B=a2+c2-ac,
再由④,得a2+c2-ac=ac,即(a-c)2=0,
从而a=c,所以A=C.⑤
由②③⑤,得A=B=C=,
所以△ABC为等边三角形.
反思与感悟 综合法的证明步骤如下:
(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等;
(2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程.
跟踪训练1 在△ABC中,=,证明:B=C.
证明 在△ABC中,由正弦定理及已知得=.
于是sin Bcos C-cos Bsin C=0,
即sin(B-C)=0,因为-π
从而B-C=0,所以B=C.
探究点二 分析法
思考1 回顾一下:基本不等式≥(a>0,b>0)是怎样证明的?
答 要证≥,
只需证a+b≥2,
只需证a+b-2≥0,
只需证(-)2≥0,
因为(-)2≥0显然成立,所以原不等式成立.
思考2 证明过程有何特点?
答 从结论出发开始证明,寻找使证明结论成立的充分条件,最终把要证明的结论变成一个明显成立的条件.
小结 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止,这种证明方法叫做分析法.