∴BD1⊂平面A1BCD1.
同理BD1⊂平面ABC1D1.
∴平面ABC1D1∩平面A1BCD1=BD1.
∵A1C∩平面ABC1D1=Q,
∴Q∈平面ABC1D1.
又∵A1C⊂平面A1BCD1,
∴Q∈平面A1BCD1.
∴Q∈BD1,即B,Q,D1三点共线.
考点2 平行关系
1.空间中平行关系的相互转化
2.判断线面平行的两种常用方法
面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:
(1)利用线面平行的判定定理;
(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.
3.判断面面平行的常用方法
(1)利用面面平行的判定定理;
(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ);
(3)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).
[典例2]
如图,在直四棱柱ABCD A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D