简后再求导,这样可以减少计算量.
跟踪训练1 求下列函数的导数:
(1)y=x4-3x2-5x+6;(2)y=x·tan x;
(3)y=(x+1)(x+2)(x+3);(4)y=.
解 (1)y′=(x4-3x2-5x+6)′=(x4)′-(3x2)′-(5x)′+6′=4x3-6x-5.
(2)y′=(x·tan x)′=′
=
=
=.
(3)方法一 y′=[(x+1)(x+2)(x+3)]′
=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+x2+3x+2
=3x2+12x+11.
方法二 ∵(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)
=x3+6x2+11x+6,
∴y′=[(x+1)(x+2)(x+3)]′=(x3+6x2+11x+6)′
=3x2+12x+11.
(4)方法一 y′=′
=
==.