v1=v0-aBt1 ⑦
v1=a1t1 ⑧
联立①②③④⑤⑥⑦⑧式,代入已知数据得
v1=1 m/s ⑨
(2)在t1时间间隔内,B相对于地面移动的距离为
sB=v0t1-aBt ⑩
设在B与木板达到共同速度v1后,木板的加速度大小为a2。对于B与木板组成的体系,由牛顿第二定律有
f1+f3=(mB+m)a2 \s\up3(11(11)
由①②④⑤式知,aA=aB;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反。由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2。设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有
v2=v1-a2t2 \s\up3(12(12)
对A有:v2=-v1+aAt2 \s\up3(13(13)
在t2时间间隔内,B(以及木板)相对地面移动的距离为
s1=v1t2-a2t \s\up3(14(14)
在(t1+t2)时间间隔内,A相对地面移动的距离为
sA=v0(t1+t2)-aA(t1+t2)2 \s\up3(15(15)
A和B相遇时,A与木板的速度也恰好相同。因此A和B开始运动时,两者之间的距离为
s0=sA+s1+sB \s\up3(16(16)
联立以上各式,并代入数据得
s0=1.9 m \s\up3(17(17)
(也可用下图中的速度-时间图线求解)