函数值,前面加上一个把α看成锐角时原函数值的符号.或者进一步简记为:"函数名不变,符号看象限",点拨、引导学生注意公式中α的任意性.
讨论结果:略.
应用示例
例1 求下列各角的三角函数值:
(1)sin(-); (2)cos; (3)cos(-).
活动:本例是直接运用公式的题目,目的是让学生熟悉公式,初步体会公式的简单应用.通过练习,加深对公式的理解,逐步达到正确熟练的公式应用.解答时可让学生观察题目中角的范围,对照公式找出哪个公式适合解决这个问题,可让学生独立解答,对个别有困难的学生教师对其适时的点拨引导.
解:(1)sin(-)=-sin=-sin(2π-)=-(-sin)=sin=
(2)cos=cos(π-)=-cos=-
(3)cos(-)=cos=cos(4π+π+)=cos(π+)=-cos=-.
点评:利用公式可把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:任意负角的三角函数→任意正角的三角函数→0-2π三角函数→锐角三角函数,这种变化体现了由未知转化为已知的转化与化归的思想方法.教师应提醒学生注意:这仅仅是一种转化模式或求解思路,不要记诵这个步骤.在实际解题中只要灵活地应用公式求解,明确先用哪个公式、后用哪个公式是没有什么固定要求的,否则就违背了学习的本质要义,解题就成了死解题、解死题,可谓题目解了千千万万,一到考试不得分,其学习当然也就成了死学习,越学越不得要领,结果把自己本来的灵活学成了呆板.如本例(1)完全可以这样来解:
sin(-)=sin(-2π+)=sin=.
变式训练
利用公式求下列三角函数值:
(1)cos(-510°15′); (2)sin(-).
解:(1)cos(-510°15′)= cos510°15′=cos(360°+150°15′)
=cos150°15′=cos(180°-29°45′)=-cos29°45′=-0.868 2.
(2)sin(-)=sin(-3×2π)=sin=
例2 化简
活动:教师引导学生认真仔细观察题目,题中四个三角函数是对诱导公式进一步的复习和巩固,重点训练学生对知识的掌握程度和应用的灵活程度.可适时地提醒学生注意,利用诱导公式时尽可能将角统一,从而达到化简的目的.本例可由学生自己完成,教师也可在学生解完此题后让学生变化题目,进行一题多变.如可在180°及360°的前面添加偶数n或奇数n或整数(此时需要分类讨论)n;亦或将角α前面的"+、-"进行变化,这样可达到一题多用的