照此规律,第n个等式可为________.
(2)已知:f(x)=1-x(x),设f1(x)=f(x),fn(x)=fn-1(fn-1(x))(n>1,且n∈N*),则f3(x)的表达式为________,猜想fn(x)(n∈N*)的表达式为________.
(3)已知数列{an}的前n项和为Sn,a1=3,满足Sn=6-2an+1(n∈N*).
①求a2,a3,a4的值;
②猜想an的表达式.
[解析] (1)12=1,
12-22=-(1+2),
12-22+32=1+2+3,
12-22+32-42=-(1+2+3+4),
...
12-22+32-42+...+(-1)n+1n2
=(-1)n+1(1+2+...+n)
=(-1)n+12(n(n+1).
(2)∵f(x)=1-x(x),∴f1(x)=1-x(x).
又∵fn(x)=fn-1(fn-1(x)),
∴f2(x)=f1(f1(x))=1-x(x)=1-2x(x),
f3(x)=f2(f2(x))=1-2x(x)=1-4x(x),
f4(x)=f3(f3(x))=1-4x(x)=1-8x(x),
f5(x)=f4(f4(x))=1-8x(x)=1-16x(x),根据前几项可以猜想fn(x)=1-2n-1x(x).
[答案] (1)12-22+32-42+...+(-1)n+1n2=(-1)n+12(n(n+1) (2)f3(x)=1-4x(x) fn(x)=1-2n-1x(x)
(3)①因为a1=3,且Sn=6-2an+1(n∈N*),
所以S1=6-2a2=a1=3,解得a2=2(3),
又S2=6-2a3=a1+a2=3+2(3),解得a3=4(3),