探索新知 1.空间多面体的展开图与表面积的计算.
(1)探索三棱柱、三棱锥、三棱台的展开图.
(2)已知棱长为a,各面均为等边三角形S - ABC (图1.3-2),求它的表面积.
解:先求△SBC的面积,过点S作SD⊥BC,交B于D,因为BC = a,
∴.
∴四面体S - ABC的表面积
. 师:在初中,我们已知学习了正方体和长方体的表面积以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?
生:相等.
师:对于一个一般的多面,你会怎样求它的表面积.
生:多面体的表面积就是各个面的面积之和,我们可以把它展成平面图形,利用平面图形求面积的方法求解.
师:(肯定)棱柱、棱锥、棱台边是由多个平面图形围成的多面体,它们的展开图是什么?如何计算它们的体积?
......
生:它的表面积都等于表面积与侧面积之和.
师以三棱柱、三棱锥、三棱台为例,利用多媒体设备投放它们的展开图,并肯定学生说法.
师:下面让我们体会简单多面体的表面积的计算.
师打出投影片、学生阅读、分析题目、整理思想.
生:由于四面体S - ABC的四个面都全等的等边三角形,所以四面体的表面积等于其中任何一个面积的4倍.
学生分析,教师板书解答过程.
让学生经历几何体展开过程感知几何体的形状.
推而广之,培养探索意识会