令,即,求得唯一的极值点答:产量为84时,利润L最大
(三)、小结:本节课学习了导数在解决实际问题中的应用.
(四)、课堂练习:第69页练习题 (五)、课后作业:第69页A组中1、3 B组题。
五、教后反思:
第八课时 导数的实际应用(二)
一、教学目标:1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用;2、提高将实际问题转化为数学问题的能力。
二、教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
三、教学方法:探究归纳,讲练结合
四、教学过程:
(一).创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
(二).新课探究
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;
4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路: