反馈汇报:圆柱的底面是圆形,所以可以先将底面平均分成若干个相等的小扇形,再把这些小扇形沿着圆柱的高切开,最后再进行拼接,可以得到一个近似的长方体。(教师适时进行引导补充)
2、教师用课件演示分割拼凑的过程。
把圆柱的底面平均分成16等份(每份是一个扇形),再把这些扇形沿着高切开,并拼接起来,可以拼成一个近似的长方体。
分成32等份,让学生明确:分成的份数越多,拼成的立体图形越接近于长方体。
3、观察分割拼凑的过程后,思考:
(1)把圆柱拼成长方体后,什么变了,什么没变?
(2)拼成的长方体和圆柱的各个量之间有什么关系?
(小组讨论交流,再反馈汇报)
反馈汇报:把圆柱拼成长方体后,形状变了,体积没变。也就是长方体的体积就等于圆柱的体积。拼成的长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
4、你能根据这个操作过程得出圆柱的体积应如何计算吗?并说明理由。
因为长方体的体积就是圆柱的体积,长方体的体积等于底面积乘高,而在操作的过程中我们发现,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积就等于底面积乘高。
(通过填空的方式对圆柱体积的推导过程进行再次叙述)
5、用字母表示圆柱的体积计算公式。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么
(四)知识拓展
小组讨论:
1、如果已知圆柱底面圆的半径和高,怎样求圆柱的体积?()
2、如果已知圆柱底面圆的直径和高,怎样求圆柱的体积