B.利用直观图。
C.利用分数与除法的关系。
(3)可引导学生总结假分数化成整数或带分数的一般方法。
3.分数的基本性质
分数的基本性质是约分、通分的基础。
例1(分数基本性质的推导)
(1)通过直观图观察得出三个分数相等。
(2)从两个方向观察三组分数的分子、分母的变化规律。
(3)通过自主举例,从具体到一般,总结出分数的基本性质。
(4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。
例2(分数基本性质的应用)
把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。
4.约分
与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。
最大公因数
例1(公因数、最大公因数的概念)
(1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。
(2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。
(3)用集合的形式表示出因数、公因数,与第二单元相响应。
例2(最大公因数的求法)
(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在"你知道吗"中进行介绍。
(2)多种方法。
A.分别列出两个数的所有因数,再找公因数。
B.从较小的数的最大因数开始找,看是不是另一个数的因数。
也可引导学生想出不同的方法,如:从较大的数的最大因数开始找,然后和上面的B方法进行比较,看哪种更合适。
(3)让学生通过观察,找出公因数和最大公因数之间的关系:所有的公因数都是最大公因数的因数。
做一做
让学生接触两类特殊数的最大公因数:两数存在因数和倍数的关系,两数互质。
约分
例3(最简分数的概念)
(1)通过实际情境引出两个分数(根据不同的素材引出:具体的米数、分成四段)。