3.判断下列各命题的真假,并说明理由.
(1)若a2>b2,则a>b;
(2)在△ABC中,当A>60°时,必有sin A>;
(3)两个向量相等,它们一定是共线向量;
(4)直线y=x与圆(x-1)2+(y+1)2=1相切.
[尝试解答] (1)假命题.例如,当a=-3,b=1时,a2>b2,但a>b不成立.
(2)假命题.例如,当A=150°时,A>60°,但sin A=,不满足sin A>.
(3)真命题.当两个向量相等时,它们的模相等,方向相同,符合共线向量的定义,它们一定是共线向量.
(4)假命题.圆心(1,-1)到直线y=x的距离为d=>1,所以直线与圆相离.
(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成"若p,则q"的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.
(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成"若p,则q"的形式之后,判断这种命题真假的办法:若由"p"经过逻辑推理,得出"q",则可判定"若p,则q"是真;判定"若p,则q"是假,只需举一反例即可.
练一练
4.下列命题中是真命题的是( )
A.若3∈A,3∈B,则A∩B={3}
B.若x2+x-2=0,则x=1
C.若函数f(x)=x2-x,则f(x)有最小值-
D.若log2x<1,则x<2
答案:C
5.判断下列命题的真假,并说明理由.
(1)正方形既是矩形又是菱形;
(2)当x=4时,2x+1<0;
(3)若x=3或x=7,则(x-3)(x-7)=0;
(4)一个等比数列的公比大于1时,该数列一定为递增数列.
解:(1)是真命题,由正方形的定义知,正方形既是矩形又是菱形.
(2)是假命题,x=4不满足2x+1<0.
(3)是真命题,由x=3或x=7能得到(x-3)(x-7)=0.