的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.
2.曲线拟合
从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.
3.相关关系的分类
(1)线性相关:若两个变量x和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的.
(2)非线性相关:若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的.此时,可以用一条曲线来拟合.
4.不相关
如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的.
思考 任意两个统计数据是否均可以作出散点图?
答 可以,不管这两个统计量是否具备相关性,以一个变量值作为横坐标,另一个作为纵坐标,均可画出它的散点图.
题型一 变量间相关关系的判断
例1 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;
②作文水平与课外阅读量之间的关系;
③农作物产量与施肥量之间的关系;
④降雪量与交通事故的发生率之间的关系.
解 两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③一块农田的农作物产量与施肥量之间的关系是一种不确定的相关关系.④降雪量与交通事故的发生率之间具有相关关系.
综上,②③④中的两个变量具有相关关系.
反思与感悟 函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.
跟踪训练1 下列两个变量间的关系不是函数关系的是( )
A.正方体的棱长与体积
B.角的度数与它的正弦值