类型二 利用空间向量证明平行问题
例2 已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是BB1、DD1的中点,求证:
(1)FC1∥平面ADE;
(2)平面ADE∥平面B1C1F.
反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.
跟踪训练2 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1,问在棱PD上是否存在一点E,使CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.
1.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为( )
A.(1,2,3) B.(1,3,2)
C.(2,1,3) D.(3,2,1)
2.已知直线l1的方向向量为a=(2,-3,5),直线l2的方向向量为b=(-4,x,y),若l1∥l2,则x,y的值分别是( )
A.6和-10 B.-6和10
C.-6和-10 D.6和10
3.若μ=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )
A.(0,-3,1) B.(2,0,1)
C.(-2,-3,1) D.(-2,3,-1)
4.若直线l∥α,且l的方向向量为(2,m,1),平面α的法向量为,则m为( )