2.运算律
交换律:
结合律:
要点诠释:
(1) 空间向量的运算是平面向量运算的延展,空间向量的加法运算仍然满足平行四边形法则和三角形法则.而且满足交换律、结合律,这样就可以自由结合运算,可以将向量合并;
(2) 向量的减法运算是向量加法运算的逆运算,满足三角形法则.
(3) 空间向量加法的运算的小技巧:
①首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,
即:
因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量;
②首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量,
即:;
要点三、空间向量的数乘运算
1. 定义:实数与空间向量a的乘积仍是一个向量,称为向量的数乘运算.
当>0时,a与a方向相同;
当>0时,a与a方向相反;
当=0时,a=0.
a的长度是a的长度的||倍.如右图所示.
2.运算律.
分配律:(a+b)=a+b;
结合律:(μa)= (μ)a.
要点诠释:
(1)实数与空间向量a的乘积a(∈R)为空间向量的数乘运算,空间向量的数乘运算可把