1、相关关系的理解 师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。生活中的任何两个变量之间是不是只有确定关系呢? 让学生举例,教师总结 如:
生:不是。师:能否举出反例? 比如,年龄与身高。 生:身高与体重
生:教师水平与学生成绩。生:网速与下载文件所需时间
师:不妨以教师水平与学生成绩为例,学生成绩与教师水平有关吗?
生:有,一般来说,教师水平越高,学生成绩越好
师:即"名师出高徒",名师一定出高徒吗? 生:不一定。
师:即学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。这就是我们这节课要共同探讨的内容 变量间的相关关系。(板书)
生活中还有很多描述相关关系的成语,如:"虎父无犬子","瑞雪兆丰年"
设计意图:通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。让学生体会研究变量之间相关关系的重要性。感受数学来源于生活。
(二)、初步探索,直观感知
1、根据样本数据利用电子表格作出散点图,直观感知变量之间的相关关系
师:在研究相关关系前,同学们先回忆一下:函数的表示方法有哪些? 生:列表,画图象,求解析式。 师:下面我们就用这些方法来研究相关关系。请同学们看这样一组数据:
探究: 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?
年龄 23 27 39 41 45 49 50 53 54 56 57 58 60 61 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6 生:随着年龄增长,脂肪含量在增加 师:有没有更直观的方式?生:画图
师生:用x轴表示年龄,y轴表示脂肪。一组样本数据就对应着一个点。由于数据比较多,我们借用电子表格来作图,请大家注意观察。
教师演示作图方法,学生观察
年龄 脂肪 23 9.5