1、教学例1. 1方法一。
师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加 跳绳、踢毽比赛的学生名单。(出示第104页表格)
师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学?
生:参加跳绳的有9人,参加踢毽的有8人。师:那么,参加体育训练的一共有几位同学?你会计算吗?
学生可能回答; 一共有17人,9+8=17(人)。 可是,参加这两项活动的没有17人呀。 我发现有的人两项活动都参加了。 应该是一共有14人参加了,算式是9+8=14(人)。 ......
师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢? 生:因为有3个人重复了。
生:因为这3个人及参加了跳绳,又参加了踢毽。
生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减 去3人,所以是9+8-3=14(人)。 生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。
师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同学呢? 生:14人。
2、方法二。
师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己 选一个替代的对象吧。 班内的14名学生分别选定自己要替代的人。
师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。 "参与报名"的学生活动,站到相应的位置。
师:杨明、刘红、李芳你们怎么还不站好呀? 生:不知道站哪边。
师:哦?为什么?怎么会出现这样的情况呢?
生:因为他们两厢运动都参加了,站左边不行,站右边也不行。