解 由题设知a≠0,否则f(x)=b为常函数,与题设矛盾.
求导得f′(x)=3ax2-12ax=3ax(x-4),
令f′(x)=0,得x1=0,x2=4(舍去).
①当a>0,且当x变化时,列表如下.
x -1 (-1,0) 0 (0,2) 2 f′(x) + 0 - f(x) -7a+b ↗ b ↘ -16a+b
由表可知,当x=0时,f(x)取得极大值b,也就是函数在[-1,2]上的最大值,∴f(0)=b=3.
又f(-1)=-7a+3,f(2)=-16a+3 ∴f(2)=-16a+3=-29,解得a=2. ②当a<0时,同理可得,当x=0时,f(x)取得极小值b,也就是函数在[-1,2]上的最小值,∴f(0)=b=-29. 又f(-1)=-7a-29,f(2)=-16a-29>f(-1), ∴f(2)=-16a-29=3,解得a=-2. 综上可得,a=2,b=3或a=-2,b=-29. 反思与感悟 已知函数在某区间上的最值求参数的值(范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值点,根据已知最值列方程(不等式)解决问题.其中注意分类讨论思想的应用. 跟踪训练3 (1)若函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是________. 答案 (-1,) 解析 由f′(x)=3-3x2=0,得x=±1. 列表如下. x
(-∞,-1)
-1
(-1,1)
1
(1,+∞)
f′(x)
-
0
+
0
-
f(x)
↘
-2
↗
2
↘