- 0 - 0 + 0 + ↘ 无极值 ↘ 极小值0 ↗ 无极值 ↗ ∴当x=0时,y有极小值且y极小值=0
例3 设,在和处有极值,且=-1,求,,的值,并求出相应的值。
解:,∵是函数的极值点,则-1,1是方程的根,即有⇒,又,则有,由上述三个方程可知,,,此时,函数的表达式为,∴,令,得,当变化时,,的变化情况表:
-1 (-1,1) 1 + 0 - 0 + ↗ 极大值1 ↘ 极小值
-1 ↗ 由上表可知, ,
(学生上黑板解答)
多媒体展示探究思考题。
在学生分组实验的过程中教师巡回观察指导。 (课堂实录)
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
极大值:
极大值点:
极小值:
极小值点:
极值:
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。