教学过程:
一、 知识回顾
1、 用你自己的话说说什么样的图形是圆?
2、 按下列要求画圆:(在平面上固定一个点A)
(1) 以点A为圆心画一个圆;
(2) 画一个圆,使所画的圆经过这个点A;
(3) 画一个圆,使A点为圆心,半径为2厘米。
3、 举出生活中看到圆的例子。(从车轮是圆形的引入新课)
二、 新课探究
1、问题:车轮为什么做成圆形的?
2、小组讨论探究策略(引导学生想做成圆形有什么好处,如果做成正方形,三角形,椭圆形又会是什么情况?找到解决问题的关键点是研究几种图形中心点的运动轨迹的不同)
3、学生动手探究(用准备好的纸片试一试),把各种图形的中心点的运动轨迹想办法描出来。
4、小组内讨论交流,准备好发言,在全班交流
由于圆上的各点到中心点(圆心)的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样坐在车上的人或放在车内的物就很平稳;而正方形、椭圆形等由于上面的点到中心点的距离不一样,这样在运动中,中心点运动的线路就不是一条直线,如果人坐在这样的车上会感觉到颠簸。
三、 观看动画,进一步体会车轮为什么做成圆形的。
本质:圆上的各点到中心点的距离都相等,而其它图形不具有这个特点。
四、 拓展应用
要重视让学生动手写的练习。可先让一些学生说,其他人补充。
五、 课后延伸
用心发现生活中的圆,尝试用学过的知识解释。
进一步体会圆的特征
要使学生明白回答这样一个问题应从哪方面入手,最基本的一个方法就是探究车轮做成圆会是什么情况,做成其它形状又是什么情况,这两种情况进行比较就能得出结论了。
观看动画,进一步加深印象。
学以致用,体验成功。
板
书
设
计 圆的认识(一)
车轮为什么做成圆形的?
圆 形:各点到中心点距离相等-------中心点运动成一条直线---------平稳
正方形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳
椭圆形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳
教学
后记 结合具体的情境,体验数学与日常生活密切相关,能用圆的知识
来解释生活中的简单现象。学生掌握得较好,能体会和解释这些与圆有关的现象。
第 一单元 第3课时
课 题 圆的认识(二) 教
学
目
标 1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系
2、进一步理解轴对称图形的特征,体会圆的对称性。
3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。 教
材
分
析 重点 理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。 难点 在折纸的过程中体会圆的特征 教具 教学圆规 电化教具 课件 一、 创设情境:
亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?
二、 探索活动:
1、 引导学生开展折纸活动,找到圆心。
(1)自己动手找到圆心。
(2)汇报交流找圆心的过程,并说出这样做的想法。
2、 通过折纸你发现了什么?理解圆的对称性。
(1)欣赏美丽的轴对称图形。
(2)再折纸,体会圆的轴对称性,画出圆的对称轴。
(3)圆有无数条对称轴。对称轴是直径所在的直线。
3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。
(1)边折纸边观察思考同一个圆里的半径有什么特点?
(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?
(3)引导学生用字母表示一个圆的直径与半径的关系。
三、课堂练习。
1、让学生独立完成"试一试"做完后交流汇报。
2、完成"练一练"进一步巩固圆的半径与直径的关系。
3、完成"填一填"
让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。
汇报交流,说答题根据。
4、完成书后第3题
四、课堂小结。
引导学生小结本节内容。
学生利用经验很容易找到圆心,如果让学生说一说为什么"对折再对折"就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。
"欣赏美丽的对称图形"引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。
多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。
个别学生做"试一试"的题目会有困难,注意个别指导。