(3)y′=+ex·ln x;
(4)y′=+.
要点二 求复合函数的导数
例2 求下列函数的导数:
(1)y=ln(x+2);
(2)y=(1+sin x)2;
解 (1)y=ln u,u=x+2
∴y′x=y′u·u′x=(ln u)′·(x+2)′=·1=.
(2)y=u2,u=1+sin x,
∴yx′=yu′·ux′=(u2)′·(1+sin x)′
=2u·cos x=2cos x(1+sin x).
规律方法 应用复合函数的求导法则求导,应注意以下几个方面:
(1)中间变量的选取应是基本函数结构.
(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.
(3)一般是从最外层开始,由外及里,一层层地求导.
(4)善于把一部分表达式作为一个整体.
(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.
跟踪演练2 (1)y=e2x+1;
(2)y=(-2)2.
解 (1)y=eu,u=2x+1,
∴y′x=y′u·u′x=(eu)′·(2x+1)′=2eu=2e2x+1.
(2)法一 ∵y=(-2)2=x-4+4,
∴y′=x′-(4)′+4′
=1-4×x-=1-.
法二 令u=-2,