2018-2019学年苏教版必修三 §3.4 互斥事件 学案
2018-2019学年苏教版必修三  §3.4 互斥事件      学案第3页

理由是:从40张扑克牌中任意抽取1张,"抽出红桃"和"抽出黑桃"是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出"方块"或者"梅花",因此,二者不是对立事件.

(2)既是互斥事件,又是对立事件.

理由是:从40张扑克牌中,任意抽取1张,"抽出红色牌"与"抽出黑色牌",两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.

(3)不是互斥事件,当然不可能是对立事件.

理由是:从40张扑克牌中任意抽取1张,"抽出的牌点数为5的倍数"与"抽出的牌点数大于9"这两个事件可能同时发生,如抽得牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件.

反思与感悟 1.要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的和事件是否为必然事件,从而可判断是否为对立事件.

2.考虑事件的结果间是否有交事件.可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.

跟踪训练1 从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是________.

①至少有一个红球与都是红球;

②至少有一个红球与都是白球;

③至少有一个红球与至少有一个白球;

④恰有一个红球与恰有两个红球.

答案 ④

解析 根据互斥事件与对立事件的定义判断.①中两事件不是互斥事件,事件"三个球都是红球"是两事件的交事件;②中两事件是对立事件;③中两事件能同时发生,如"恰有一个红球和两个白球",故不是互斥事件;④中两事件是互斥而不对立事件.

题型二 事件的运算

例2 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:

(1)请举出符合包含关系、相等关系的事件;