变式训练3:(课本P5练习NO:2)
例4:(tb0100305):下面一组集合中各个集合的意义是否相同?为什么?
{1,5} ;{(1,5)};{5,1};{(5,1)}
分析:对于这个集合问题,只有明确集合中元素的具体意义才能作出正确解答。
解:{1,5}是由两个数1,5组成的集合,根据集合中元素的无序性,它与{5,1}是同一集合;{(1,5)}是一个点(1,5)组成的单元集合,由于(1,5)和(5,1)表示两个不同的点,所以{(1,5)}和{(5,1)}是不同的两个集合。
变式训练4:
(1)下面一组集合各个集合的意义是否相同?为什么?
,,,
(2)用列举法表示集合{(x,y)|x ∈{1,2},y∈{1,2,3}}
三、课堂小结,巩固反思:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
集合的三性:确实性,互异性,无序性。
四、布置作业:
A组:
1、(课本P11习题1.1A组NO:1)(做在课本上)
2、(课本P11习题1.1A组NO:2)(做在课本上)
3、(课本P11习题1.1A组NO:3)
4、(课本P11习题1.1A组NO:4)
5、(tb0300202):已知集合M={a,b,c}中的三个元素可构成三角形的三边长,那么ABC一定不是( D )。
(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)等腰三形
B组:
1.已知集合A={x|x=2n,且n∈N},B={x|x-6x+5=0},用∈或填空:
4 A,4 B,5 A,5 B
2.已知集合A={x|-3 3. 用列举法表示集合.