[思路点拨] 按求函数极值的步骤求解,要注意函数的定义域.
[精解详析] (1)函数f(x)=x3-3x2-9x+5的定义域为R,且f′(x)=3x2-6x-9.解方程3x2-6x-9=0,得x1=-1,x2=3.
当x变化时,f′(x)与f(x)的变化情况如下表:
x (-∞,-1) -1 (-1,3) 3 (3,+∞) f′(x) + 0 - 0 + f(x) 极大值10 极小值-22
因此,函数f(x)的极大值为f(-1)=10;
极小值为f(3)=-22.
(2)函数f(x)=的定义域为(0,+∞),
且f′(x)=.
令f′(x)=0,解得x=e.
当x变化时,f′(x)与f(x)的变化情况如下表:
x (0,e) e (e,+∞) f′(x) + 0 - f(x) 极大值 因此函数f(x)的极大值为f(e)=,没有极小值.
[一点通] (1)求可导函数极值的步骤:
①求导数f′(x);
②求方程f′(x)=0的根;
③检查f′(x)的值在方程f′(x)=0的根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
(2)注意事项:
①不要忽视函数的定义域;
②要正确地列出表格,不要遗漏区间和分界点.