(2)求回路中的感应电流的大小和方向.
(3)分析研究导体受力情况(包括安培力).
(4)列动力学方程或平衡方程求解.
2.电磁感应现象中涉及的具有收尾速度的力学问题,关键要抓好受力情况和运动情况的动态分析:
周而复始地循环,加速度等于零时,导体达到稳定运动状态.
3.两种状态处理
导体匀速运动,受力平衡,应根据平衡条件列式分析;导体做匀速直线运动之前,往往做变加速运动,处于非平衡状态,应根据牛顿第二定律或结合功能关系分析.
例1 如图1,两固定的绝缘斜面倾角均为θ,上沿相连。两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g,已知金属棒ab匀速下滑。求
图1
(1)作用在金属棒ab上的安培力的大小;
(2)金属棒运动速度的大小。
答案 (1)mg(sin θ-3μcos θ)
(2)(sin θ-3μcos θ)
解析 (1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度总是相等,cd也做匀速直线运动。设导线的张力的大小为T,右斜面对ab棒的支持力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为FN2,对于ab棒,受力分析如图甲所示,由力的平衡条件得