2018-2019学年人教A版选修2-2 1.3导数在研究函数中的应用3 教案
2018-2019学年人教A版选修2-2        1.3导数在研究函数中的应用3   教案第2页

答 f(x1),f(x3),f(x5)是函数y=f(x)的极小值;f(x2),f(x4),f(x6)是函数y=f(x)的极大值.

思考2 观察思考1的函数y=f(x),你能找出函数f(x)在区间[a,b]上的最大值、最小值吗?若将区间改为(a,b),f(x)在(a,b)上还有最值吗?由此你得到什么结论?

小结 一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值,且最值必在端点处或极值点处取得.

思考3 函数的极值和最值有什么区别和联系?

答 函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值,所以在开区间(a,b)上若存在最值,则必是极值.

小结 求一个函数在闭区间上的最值步骤:

1.求导,确定函数在闭区间上的极值点.

2.求出函数的各个极值和端点处的函数值.

3.比较大小,确定结论.

例1 求下列函数的最值:

(1)f(x)=2x3-12x,x∈[-2,3];(2)f (x)=x+sin x,x∈[0,2π].

x (-∞,-) - (-,) (,+∞) f′(x) + 0 - 0 + f(x) 单调递增 极大值 单调递减 极小值 单调递增 所以函数f(x)的单调递增区间为(-∞,-),(,+∞),单调递减区间为(-,).

因为f(-2)=8,f(3)=18,f()=-8,f(-)=8;

所以当x=时,f(x)取得最小值-8;当x=3时,f(x)取得最大值18.

(2)f′(x)=+cos x,令f′(x)=0,又x∈[0,2π],解得x=π或x=π.

计算得f(0)=0,f(2π)=π,f(π)=+,f(π)=π-.

∴当x=0时,f(x)有最小值f(0)=0;当x=2π时,f(x)有最大值f(2π)=π.

反思与感悟 (1)求函数的最值,显然求极值是关键的一环.但仅仅是求最值,可用下面简化的方法求得.