图1
(1)求这一天的最大温差;
(2)写出这段曲线的函数解析式.
活动:这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本例是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本例给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决.
题目已经给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图像的解析式,然后再求函数的最值差.教师应引导学生观察思考:"求这一天的最大温差"实际指的是"求6时到14时这段时间的最大温差",可根据前面所学的三角函数图像直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.
解:(1)由图可知,这段时间的最大温差是20 ℃.
(2)从图中可以看出,从6-14时的图像是函数y=Asin(ωx+φ)+b的半个周期的图像,
∴A=(30-10)=10,b=(30+10)=20.
∵·=14-6,
∴ω=.将x=6,y=10代入上式,解得φ=.
综上,所求解析式为y=10sin(x+)+20,x∈[6,14].
点评:本例中所给出的一段图像实际上只取6-14即可,这恰好是半个周期,提醒学生注意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.
例2 (2007全国高考)函数y=|sinx|的一个单调增区间是( )
A.(-,) B.(,) C.(π,) D.(,2π)
答案:C
例3 水车问题.
水车是一种利用水流的动力进行灌溉的工具,图2是一个水车工作的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2m,如果水车逆时针匀速旋转,旋转一圈的时间是min.在水车轮边缘上取一点P,点P距水面的高度为h(m).