类型一:向量在平面几何中的应用
例1.用向量法证明:直径所对的圆周角是直角.
已知:如下图,AB是⊙O的直径,点P是⊙O上任一点(不与A、B重合),求证:∠APB=90°.
证明:联结OP,设向量,则且,
,即∠APB=90°.
【总结升华】解决垂直问题,一般的思路是将目标线段的垂直转化为向量的数量积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的数量积运算式使问题获解,如本题便是将向量,由基底,线性表示.当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知.
举一反三:
【高清课堂:平面向量的应用举例395486 例1】
【变式1】P是△ABC所在平面上一点,若,则P是△ABC的( )
A.外心 B.内心 C.重心 D.垂心
【答案】D
【高清课堂:平面向量的应用举例395486 例4】
【变式2】已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________;的最大值为________.
【解析】==1
=
=
= (F是E点在上的投影)