(3)如果碰撞是弹性碰撞,设碰后两物体的速度分别为v1′、v2′,由动量守恒定律得m1v1+m2v2=m1v1′+m2v2′,
由动能守恒得
m1v+m2v=m1v1′2+m2v2′2,
代入数据解得v1′=-0.7 m/s,v2′=0.8 m/s.
二、弹性正碰模型及拓展应用
1.两质量分别为m1、m2的小球发生弹性正碰,v1≠0,v2=0,则碰后两球速度分别为v1′=v1,v2′=v1.
(1)若m1=m2的两球发生弹性正碰,v1≠0,v2=0,则碰后v1′=0,v2′=v1,即二者碰后交换速度.
(2)若m1≫m2,v1≠0,v2=0,则二者发生弹性正碰后, v1′=v1,v2′=2v1.表明m1的速度不变,m2以2v1的速度被撞出去.
(3)若m1≪m2,v1≠0,v2=0,则二者弹性正碰后,v1′=-v1,v2′=0.表明m1被反向以原速率弹回,而m2仍静止.
2.如果两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成是弹性正碰.
【例2】 如图1所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接,质量为m1的小球从高为h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为m2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失.求碰撞后小球m2的速度大小.
图1
答案
解析 设m1碰撞前的速度为v10,根据机械能守恒定律有m1gh=m1v
解得v10=①
设碰撞后m1与m2的速度分别为v1和v2,根据动量守恒定律有m1v10=m1v1+m2v2②
由于碰撞过程中无机械能损失
m1v=m1v+m2v③
联立②③式解得v2=④