解 (1)由题意,得a3+1=a1+5,a7+1=a1+13,
所以由(a3+1)2=(a1+1)·(a7+1)
得(a1+5)2=(a1+1)·(a1+13)
解得a1=3,所以an=3+2(n-1),即an=2n+1.
(2)由(1)知an=2n+1,则
Sn=n(n+2),=,
Tn=
=
=-.
考点二 数列在实际问题中的应用
【例2】 (2012·湖南卷)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(1)用d表示a1,a2,并写出an+1与an的关系式;
(2)若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示).
解 (1)由题意,
得a1=2 000(1+50%)-d=3 000-d,
a2=a1(1+50%)-d=a1-d=4 500-d,
an+1=an(1+50%)-d=an-d.
(2)由(1),得an=an-1-d
=-d
=2an-2-d-d
...
=n-1a1-d.