CCC=90(种)方法.
(2)先在6本书中任取1本,作为一堆,有C种取法,再从余下的5本书中任取2本,作为一堆,有C种取法,最后余下3本书作为一堆,有C种取法,共有方法CCC=60(种).
(3)分成三堆共有CCC种,但每一种分组方法又有A种不同的分配方案,故一人得1本,一人得2本,一人得3本的分法有CCCA=360(种).
在本例条件下,若甲、乙、丙三人中,一人得4本,另外两个人每个人得1本,有多少种分法?
解:先分成三堆,为部分均匀分组问题,共有种,然后分给三个人共有·A=90(种).
分组、分配问题的求解策略
(1)分组问题属于"组合"问题,常见的分组问题有三种.
①完全均匀分组,每组的元素个数均相等;
②部分均匀分组,应注意不要重复,若有n组均匀,最后必须除以n!;
③完全非均匀分组,这种分组不考虑重复现象.
(2)分配问题属于"排列"问题.
分配问题可以按要求逐个分配,也可以分组后再分配.
将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.
(1)有多少种放法?
(2)每盒至多一球,有多少种放法?
(3)恰好有一个空盒,有多少种放法?
(4)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?
解:(1)每个小球都可能放入4个盒子中的任何一个,将小球一个一个放入盒子,共有4×4×4×4=44=256种放法.
(2)这是全排列问题,共有A=24种放法.
(3)法一:先将4个小球分为三组,有种方法,再将三组小球投入四个盒子中的三