集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间.
(三).典例探析
例1、已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为"临界点".
综上,函数图像的大致形状如图3.3-4所示.
例2、判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;