-xn+1≤(1-)(-xn).③
反复运用③式,得
-xn≤(1-)n-1(-x1)<(1-)n-1.
xn<1-和-xn<(1-)n-1两式相加,
知2-1<(1-)n-1对任意n≥1成立.
根据指数函数y=(1-)n的性质,得2-1≤0,
c≤,故0<c≤.
(ii)若0<c≤,要证数列{xn}为递增数列,
即xn+1-xn=-x+c>0.
即证xn<对任意n≥1成立.
下面用数学归纳法证明当0<c≤时,xn<对任意n≥1成立.
(1)当n=1时,x1=0<≤,结论成立.
(2)假设当n=k(k∈N*)时结论成立,即:xk<.因为函数f(x)=-x2+x+c在区间内单调递增,所以xk+1=f(xk)<f()=,这就是说当n=k+1时,结论也成立.
故xn<对任意n≥1成立.
因此,xn+1=xn-x+c>xn,即{xn}是递增数列.
由(i)(ii)知,使得数列{xn}单调递增的c的范围是.
2.(江苏高考)已知函数f0(x)=(x>0),设fn(x)为fn-1(x)的导数,n∈N*.
(1)求2f1+f2的值;
(2)证明:对任意的n∈N*,等式nfn-1+fn=都成立.
解:由已知,得f1(x)=f′0(x)=′=-,