命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,
命题乙:函数y=(2a2-a)x为增函数.
分别求出符合下列条件的实数a的范围.
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.
1.判定一个命题是全称命题还是特称命题时,主要方法是看命题中是否含有全称量词或存在量词,要注意的是有些全称命题中并不含有全称量词,这时我们就要根据命题所涉
及的意义去判断.
2.要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立;但要判定一个全称命题是假命题,却只需找出集合M中的一个x=x0,使得p(x0)不成立即可(这就是我们常说的"举出一个反例").要判定一个特称命题为真命题,只要在限定集合M中,至少能找到一个x=x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.
3.全称命题的否定,其模式是固定的,即相应的全称量词变为存在量词,存在量词变为全称量词.具有性质p变为具有性质綈p.全称命题的否定是特称命题,特称命题的否定是全称命题.
§1.4 全称量词与存在量词 答案
知识梳理
1.(1)对所有的 对任意一个 ∀ (2)全称量词 (3)∀x∈M,p(x)
2.(1)存在一个 至少有一个 ∃ (2)存在量词 (3)∃x0∈M,p(x0)
3.(1)∃x0∈M,綈p(x0) (2)∀x∈M,綈p(x)
4.结论 结论 条件
作业设计
1.C ["高二(一)班绝大多数同学是团员",即"高二(一)班有的同学不是团员",是特称命题.]
2.D ["存在"是存在量词.]
3.B [A、B、D中命题均为全称命题,但A、D中命题是假命题.]
4.B
5.C [全称命题的否定是特称命题,应含存在量词.]
6.C [特称命题的否定是全称命题,应含全称量词.]
7.∃x0<0,使(1+x0)(1-9x0)>0
8.存在实数m,关于x的方程x2+x+m=0没有实根
9.①②③
10.解 (1)(2)是全称命题,(3)(4)是特称命题.