2019-2020学年人教A版选修1-1 3.1.1 变化率问题 教案
2019-2020学年人教A版选修1-1           3.1.1 变化率问题  教案第2页

   气球的平均膨胀率为

可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.

思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

问题2 高台跳水问题:

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在怎样的函数关系?

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.

)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.

思考计算:和的平均速度

在这段时间里,;

在这段时间里,

探究:计算运动员在这段时间里的平均速度,并思考以下问题:

⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,

所以,

虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.

(1)让学生亲自计算和思考,展开讨论;

(2)老师慢慢引导学生说出自己的发现,并初步修正到最终的结论上.

(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;

(二)平均变化率概念:

引出函数平均变化率的概念.找出求函数平均变化率的步骤.

1.上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率

2.若设, (这里看作是对于x1的一个"增量"可用x1+代替x2,同样)