(ⅰ)x0=0,y0=0时,d=;(ⅱ)x0≠0,y0=0时,d=;
(ⅲ)x0=0,y0≠0时,d=.
观察、类比上面三个公式,能否猜想:对任意的点P(x0,y0),d=?
学生应能得到猜想:d=.
启发诱导:当点P不在特殊位置时,能否在距离不变的前提下适当移动点P到特殊位置,从而可利用前面的公式?(引导学生利用两平行线间的距离处处相等的性质,作平行线,把一般情形转化为特殊情形来处理)
证明:设过点P且与直线l平行的直线l1的方程为Ax+By+C1=0,令y=0,得P′(,0).
∴P′N=. (*)
∵P在直线l1:Ax+By+C1=0上,
∴Ax0+By0+C1=0.∴C1=-Ax0-By0.
代入(*)得|P′N|=,
即d=,.
②可以验证,当A=0或B=0时,上述公式也成立.
③引导学生得到两条平行线l1:Ax+By+C1=0与l2:Ax+By+C2=0的距离d=.
证明:设P0(x0,y0)是直线Ax+By+C2=0上任一点,则点P0到直线Ax+By+C1=0的距离为d=.
又Ax0+By0+C2=0,即Ax0+By0=-C2,∴d=.