当x=-1或x=1时,f(x)取最大值4.
[一点通] 求函数的最值需要注意的问题:
(1)用导数求函数的最值与求函数的极值方法类似,在给定区间是闭区间时,极值要和区间端点的函数值进行比较,并且要注意取极值的点是否在区间内;
(2)当函数多项式的次数大于2或用传统方法不易求解时,可考虑用导数的方法求解.
1.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m.则M-m=________.
解析:令f′(x)=3x2-12=0,解得x=±2.
计算f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,故M-m=32.
答案:32
2.求函数f(x)=ex(3-x2)在区间[2,5]上的最值.
解:∵f(x)=3ex-exx2,
∴f′(x)=3ex-(exx2+2exx)
=-ex(x2+2x-3)
=-ex(x+3)(x-1),
∵在区间[2,5]上,f′(x)=-ex(x+3)(x-1)<0,
即函数f(x)在区间[2,5]上是单调递减函数,
∴x=2时,函数f(x)取得最大值f(2)=-e2;
x=5时,函数f(x)取得最小值f(5)=-22e5.
已知函数的最值求参数 [例2] 已知函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
[思路点拨] 根据导数与单调性之间的关系求解,由于f(x)既有最大值,又有最小值,因此a≠0,要注意对参数的取值情况进行讨论.
[精解详析] 由题设知a≠0,否则f(x)=b为常数函数,与题设矛盾.
取导得f′(x)=3ax2-12ax=3ax(x-4).
令f′(x)=0,得x1=0,x2=4(舍).
(1)∵当a>0时,如下表:
x (-1,0) 0 (0,2)