①当mn<0时,方程mx2-x+n=0有实数根;
②能被6整除的数既能被2整除,又能被3整除.
[解] ①将命题写成"若p,则q"的形式为:若mn<0,则方程mx2-x+n=0有实数根.
它的逆命题、否命题和逆否命题如下:
逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假)
否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假)
逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真)
②将命题写成"若p,则q"的形式为:若一个数能被6整除,则它能被2整除,且能被3整除.
它的逆命题、否命题和逆否命题如下:
逆命题:若一个数能被2整除又能被3整除,则它能被6整除.(真)
否命题:若一个数不能被6整除,则它不能被2整除或不能被3整除.(真)
逆否命题:若一个数不能被2整除或不能被3整除,则它不能被6整除.(真)
1.四种命题的改写方法
先明确原命题的条件p与结论q,把原命题写成"若p,则q"的形式,再去构造其他三种命题,对具有大前提的原命题,在写出其他三种命题时,应保留这个大前提.
2.命题真假的判断方法