位置关系
利用距离判断
利用方程判断
点M在圆上
CM=r
(x0-a)2+(y0-b)2=r2
点M在圆外
CM>r
(x0-a)2+(y0-b)2>r2
点M在圆内
CM 1.方程(x-a)2+(y-b)2=m2一定表示圆.( × ) 2.确定一个圆的几何要素是圆心和半径.( √ ) 3.圆(x+1)2+(y+2)2=4的圆心坐标是(1,2),半径是4.( × ) 类型一 求圆的标准方程 例1 (1)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的标准方程为________________. (2)与y轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________. 答案 (1)(x-2)2+y2=9 (2)(x+5)2+(y+3)2=25 解析 (1)设圆心C的坐标为(a,0)(a>0), 由题意知=,解得a=2, 则圆C的半径为r=CM==3. ∴圆的标准方程为(x-2)2+y2=9. (2)∵圆心坐标为(-5,-3), 又与y轴相切,∴圆的半径为5, ∴圆的标准方程为(x+5)2+(y+3)2=25. 反思与感悟 (1)确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,要首先求出圆心坐标和半径,然后直接写出圆的标准方程. (2)在确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如"弦的中垂线必过圆心""两条弦的中垂线的交点必为圆心"等. 跟踪训练1 已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,求圆C的标准方程. 解 方法一 设圆心为(a,0), 则=,