图1
A.可求出b、c的公转半径之比
B.可求出c、d的向心加速度之比
C.若已知c的公转半径,可求出红矮星的质量
D.若已知c的公转半径,可求出红矮星的密度
解析 行星b、c的周期分别为5天、18天,均做匀速圆周运动,根据开普勒第三定律公式=k,可以求解出轨道半径之比,选项A正确;根据万有引力提供向心力列式,对行星c、d,有G=ma,故可以求解出c、d的向心加速度之比,选项B正确;已知c的公转半径和周期,根据牛顿第二定律,有G=mr,可以求解出红矮星的质量,但不知道红矮星的体积,故无法求解红矮星的密度,选项C正确,D错误。
答案 D
三、人造卫星的发射、变轨与对接
1.发射问题
要发射人造卫星,动力装置在地面处要给卫星一很大的发射初速度,且发射速度v>v1=7.9 km/s,人造卫星做离开地球的运动;当人造卫星进入预定轨道区域后,再调整速度,使F引=F向,即G=m,从而使卫星进入预定轨道。
2.变轨问题
如图2所示,一般先把卫星发射到较低轨道1上,然后在P点点火,使卫星加速,让卫星做离心运动,进入轨道2,到达Q点后,再使卫星加速,进入预定轨道3。
回收过程:与发射过程相反,当卫星到达Q点时,使卫星减速,卫星由轨道3进入轨道2,当到达P点时,再让卫星减速进入轨道1,再减速到达地面。