2018-2019学年苏教版选修2-3 2.3.2 事件的独立性 教案
2018-2019学年苏教版选修2-3    2.3.2 事件的独立性   教案第3页

此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率 P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.

(2 ) "两次抽奖恰有一次抽到某一指定号码"可以用(A)U(B)表示.由于事件A与B互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P (A)十P(B)=P(A)P()+ P()P(B )

= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.

( 3 ) "两次抽奖至少有一次抽到某一指定号码"可以用(AB ) U ( A)U(B)表示.由于事件 AB , A和B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P(A)+ P(B ) = 0.0025 +0. 095 = 0. 097 5.

例3.甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:

(1)人都射中目标的概率;

(2)人中恰有人射中目标的概率;

(3)人至少有人射中目标的概率;

(4)人至多有人射中目标的概率?

【解析】记"甲射击次,击中目标"为事件,"乙射击次,击中目标"为事件,则与,与,与,与为相互独立事件,(1)人都射中的概率为:,