它的平均变化率为.
其中自变量的变化x2-x1称作自变量的改变量,记作Δx,函数值的变化f(x2)-f(x1)称作函数值的改变量,记作Δy.这样,函数的平均变化率就可以表示为函数值的改变量与自变量的改变量之比,即=.
(2)作用:刻画函数值在区间[x1,x2]上变化的快慢.
知识点二 瞬时变化率
思考 瞬时速度与平均速度有何区别?
答案 瞬时速度刻画的是物体在某一时刻运动的快慢;平均速度刻画的是物体在一段时间内运动的快慢.
梳理 瞬时变化率的定义及作用
(1)定义:对于一般的函数y=f(x),在自变量x从x0变到x1的过程中,若设Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化率是==.而当Δx趋于0时,平均变化率就趋于函数在x0点的瞬时变化率.
(2)作用:刻画函数在一点处变化的快慢.
对于函数y=f(x),当x从x1变为x2时,函数值从f(x1)变为f(x2),若记Δx=x2-x1,Δy=f(x2)-f(x1),则
1.Δx可正,可负,可为零.( × )
2.函数y=f(x)的平均变化率为==.( √ )
3.函数y=f(x)的平均变化率为==.( √ )
4.当Δx趋于0时,就趋于函数在x1处的瞬时变化率.( √ )