过度:(对着板书)你们太了不起来,如此迅速的从不同的多边形中找到了两条规律。这两个规律,看起来有些不同,但又有所相同。如果多边形内部有3枚钉子,你猜猜会有怎样的变化?(学生表述后,教师板书"3"、"s=n÷2+2")
4枚呢?(教师板书"4"、"s=n÷2+3")
5枚呢?(教师板书"5"、"s=n÷2+4")
6枚呢?7枚呢?8枚呢? 20枚呢?a枚呢?
师追问:后面加上的数有什么规律?(在学生回答到"后面加的数比内部的钉子数少1",板贴:内部钉子数-1)
(2)出示验证要求,完成探究活动(三)
a.过度:你们太棒了,特别善于观察,敢于猜测!但是这些猜测现在要打上一个"?",因为只用通过验证,才能完全成立!时间关系,我们分组行动吧!请你们小组合作,从中选择一条加以验证。
b.活动前稍加指导:(出示课件)如果你们小组想验证"内部钉子数3枚",这儿就填上3,如果你们小组想验证"内部钉子数4枚",这儿就填上4,这儿要填写刚才相应的推测!明白了吗?活动开始吧!
c.学生活动,教师巡视。
d.集体交流。现在我们来汇报一下你们的验证结果!哪组先说?请你们组的一位同学把你们围成的图形举起来,给大家看一下,哪位代表发言?还有哪个组和他们组一样,也是验证这种类型的?你们和他们的结论一致吗?
你们组是验证那一条?能说说吗?
e.得出结论:
师:经过大家的努力,我们现在可以确定这些猜想都是成立的。这么多的规律归结成一句话就是----多边形的面积=边上钉子数÷2+内部钉子数-1,用字母表示就是s=n÷2+a-1,这里的a可以表示许多数。
老师有个疑问:这里的a可以是0吗?(预设:不能|能)
教师点拨:(点击课件)出示四根钉子围成的一个正方形,我们把它放大一下(课件显示放大后的图形)带着学生一起核算。板书(0 s=n÷2+0-1,并随机改成s=n÷2-1)
三、课堂总结(预设3分钟)