所以A,B两点坐标为,,
所以|AB|=2|m|.
因为△OAB的面积为4,
所以·||·2|m|=4,所以m=±2.
所以抛物线的标准方程为y2=±4x.
引申探究
等腰直角三角形AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,则△AOB的面积是( )
A.8p2 B.4p2 C.2p2 D.p2
答案 B
解析 因为抛物线的对称轴为x轴,内接△AOB为等腰直角三角形,所以由抛物线的对称性知,直线AB与抛物线的对称轴垂直,从而直线OA与x轴的夹角为45°.
由方程组
得或
所以易得A,B两点的坐标分别为(2p,2p)和(2p,-2p).
所以|AB|=4p,所以S△AOB=×4p×2p=4p2.
反思与感悟 把握三个要点确定抛物线简单几何性质
(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x 还是y,一次项的系数是正还是负.
(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.
(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.