(2)设切点为(x0,y0),
则直线l的斜率为f′(x0)=3x+1,
y0=x+x0-16,
∴直线l的方程为y=(3x+1)(x-x0)+x+x0-16.
又∵直线l过点(0,0),
∴0=(3x+1)(-x0)+x+x0-16,
整理得,x=-8,
∴x0=-2.
∴y0=(-2)3+(-2)-16=-26,
得切点坐标为(-2,-26),k=3×(-2)2+1=13.
∴直线l的方程为y=13x,
切点坐标为(-2,-26).
利用几何意义求切线时的关键
利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一是求"在某点处的切线方程",则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一类是求"过某点的切线方程",这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得
y0-y1=f′(x1)(x0-x1), ①
又y1=f(x1), ②
由①②求出x1,y1的值,
即求出了过点P(x0,y0)的切线方程.