2018-2019学年人教A版选修2-1 立体几何中的向量方法 学案
2018-2019学年人教A版选修2-1    立体几何中的向量方法  学案第3页

(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为

2.用向量证明空间中的平行关系

(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.

(2)设直线l的方向向量为v,与平面α共面的两个不共线向量为v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2.

(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.

(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.

3.用向量证明空间中的垂直关系

(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.

(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.

(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.

4.空间向量与空间角的关系

(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2所成的角θ满足cos θ=|cos〈m1,m2〉|.

(2)设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α所成角θ满足sin θ=|cos〈m,n〉|.

(3)求二面角的大小

①如图①所示,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈\s\up6(→(→),\s\up6(→(→)〉.

②如图②③所示,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos〈n1,n2〉或-cos〈n1,n2〉.

题型一 空间向量及其运算

例1 已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=\s\up6(→(→),b=\s\up6(→(→).

(1)求向量a与向量b的夹角的余弦值;

(2)若ka+b与ka-2b互相垂直,求实数k的值.

解 (1)∵a=\s\up6(→(→)=(1,1,0),b=\s\up6(→(→)=(-1,0,2),