名女生"这一事件发生的概率没有影响,所以它们是相互独立事件.
(2)"从8个球中任意取出1个,取出的是白球"的概率为,若这一事件发生了,则"从剩下的7个球中任意取出1个,取出的仍是白球"的概率为;若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.
(3)记A:出现偶数点,B:出现3点或6点,则A={2,4,6},B={3,6},AB={6},
∴P(A)==,P(B)==,P(A∩B)=.
∴P(A∩B)=P(A)·P(B),
∴事件A与B相互独立.
判断事件是否相互独立的方法
1.定义法:事件A,B相互独立⇔P(A∩B)=P(A)·P(B).
2.由事件本身的性质直接判定两个事件发生是否相互影响.
3.条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.
[再练一题]
1.(1)下列事件中,A,B是相互独立事件的是( )
A.一枚硬币掷两次,A="第一次为正面",B="第二次为反面"
B.袋中有2白,2黑的小球,不放回地摸两球,A="第一次摸到白球",B="第二次摸到白球"
C.掷一枚骰子,A="出现点数为奇数",B="出现点数为偶数"
D.A="人能活到20岁",B="人能活到50岁"
(2)甲、乙两名射手同时向一目标射击,设事件A:"甲击中目标",事件B:"乙击中目标",则事件A与事件B( )
【导学号:62980044】
A.相互独立但不互斥 B.互斥但不相互独立
C.相互独立且互斥 D.既不相互独立也不互斥
【解析】 (1)把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响