2018-2019学年人教B版 选修2-3 2.1.1离散型随机变量 教案
2018-2019学年人教B版   选修2-3  2.1.1离散型随机变量 教案第3页

 (2)某单位的某部电话在单位时间内收到的呼叫次数η

解:(1) ξ可取3,4,5

ξ=3,表示取出的3个球的编号为1,2,3;

ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;

  ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5

(2)η可取0,1,...,n,...

η=i,表示被呼叫i次,其中i=0,1,2,...

例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:"ξ> 4"表示的试验结果是什么?

答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说"ξ>4"就是"ξ=5"所以,"ξ>4"表示第一枚为6点,第二枚为1点

  例3 某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量

  (1)求租车费η关于行车路程ξ的关系式;

(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?

解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2

(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.

所以,出租车在途中因故停车累计最多15分钟.

四、课堂练习:

1.①某寻呼台一小时内收到的寻呼次数;②长江上某水文站观察到一天中的水位;③某超市一天中的顾客量 其中的是连续型随机变量的是( )

A.①; B.②; C.③; D.①②③

2.随机变量的所有等可能取值为,若,则( )

A.; B.; C.; D.不能确定

3.抛掷两次骰子,两个点的和不等于8的概率为( )

A.; B.; C.; D.

4.如果是一个离散型随机变量,则假命题是( )

A. 取每一个可能值的概率都是非负数;B. 取所有可能值的概率之和为1;

C. 取某几个值的概率等于分别取其中每个值的概率之和;

D. 在某一范围内取值的概率大于它取这个范围内各个值的概率之和