章末复习
学习目标 1.梳理本章知识,构建知识网络.2.进一步巩固和理解圆锥曲线的定义.3.掌握圆锥曲线的简单性质,会利用简单性质解决相关问题.4.掌握简单的直线与圆锥曲线位置关系问题的解决方法.
1.三种圆锥曲线的定义、标准方程、几何性质
椭圆
双曲线
抛物线
定义
平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合
平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合
平面内与一个定点F和一条定直线l(l不过F)距离相等的点的集合
标准方程
+=1(a>b>0)
-=1(a>0,b>0)
y2=2px(p>0)
关系式
a2-b2=c2
a2+b2=c2
图形
封闭图形
无限延展,有渐近线
无限延展,没有渐近线
对称性
对称中心为原点
无对称中心
两条对称轴
一条对称轴
顶点
四个
两个
一个
离心率
0
2.待定系数法求圆锥曲线标准方程
(1)椭圆、双曲线的标准方程
求椭圆、双曲线的标准方程包括"定位"和"定量"两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论.
(2)抛物线的标准方程
求抛物线的标准方程时,先确定抛物线的方程类型,再由条件求出参数p的大小.当焦点位置不确定时,要分情况讨论,也可将方程设为y2=2px(p≠0)或x2=2py(p≠0),然后建立