2019-2020学年人教A版选修2-1 含有一个量词的命题的否定 学案
2019-2020学年人教A版选修2-1    含有一个量词的命题的否定  学案第3页

       1.4.2含有一个量词的命题的否定教案

一、教材分析

《简易逻辑》列入高中学习内容以后,不少学生对逻辑联结词非p,即命题p的否定的理解存在一些误区.而对含有一个量词的命题的否定又是全称量词与存在量词的重点内容,也是新课标高考的一个亮点.下面就含有一个量词的命题的否定进行精析.

二、教学目标

  1.通过生活和数学中的实例,理解对含有一个量词的命题的否定的意义;

    2.能正确地对含有一个量词的命题进行否定;

    3.进一步提高利用全称量词与存在量词准确、简洁地叙述数学内容的能力;

    4.培养对立统一的辩证思想

三、教学重点难点

  教学重点:

通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定。

教学难点:

   正确地对含有一个量词的命题进行否定。

四、学情分析

   学生已学过初中和高中必修①~⑤的全部内容,已拥有了基本的模块知识和数学框架,对用数学符号表示数学命题并不陌生,课本中许多数学也来自生活,对纯数学命题和生活中数学命题有一定的经验,这些都是学生进一步学习的基础,一些常见的数学思想如转化,形式化思想在各个模块中也有所渗透,这些都为学习全称量词与特称量词提供了有利的保障和支撑.

  概念的形成过程应该是一个归纳、概括的过程,是一个由特殊到一般,由具体到抽象的过程.教师应该充分认识到,学生知识结构的改变不仅是要教师讲、教师引导,还需要学生的亲身体验,亲自参与,与同伴交流.

学生在学习数学符号的过程中会存在一定的困难,这些困难的客观因素在于数学符号的高度抽象性、概括性和复杂行,要把具体的数学命题、生活中的数学命题的共性特征抽象出来,用数学的符号语言统一的概括描述它们的共性特征,对学生比较困难.主观因素在于三个方面:①思维定势的影响,全称命题""中,变量和含有变量的命题受函数概念的影响而不能正确理解全称命题;②理解数学符号表述含义的困难,这些困难不仅是对量词概念的理解,还包括命题中所含的其他数学符号的含义。教师引导学生辨析很有必要.教师引导学生获得对问题本质的认识是一个具有挑战性的教学活动.所以企图在一节